المجلد 1 - العدد 17
ديسمبر 2024
L’enseignement à distance
الملخص:
لمزايا: يوفر التعليم عن بُعد مرونة كبيرة، وإمكانية وصول أعلى، وتخصيص مسارات التعلم، واختيار واسع من الدورات التدريبية. تجعل هذه الخصائص منه حلاً جذابًا بشكل خاص للعديد من أنواع المتعلمين، سواء كانوا طلابًا أو مهنيين يسعون لتطوير مهاراتهم.
• التحديات: ومع ذلك، هناك بعض القيود مثل العزلة الاجتماعية، الحاجة إلى درجة عالية من الاستقلالية والانضباط الذاتي، التفاوت في الوصول إلى التقنيات، والجودة المتفاوتة للدورات. تتطلب هذه التحديات استراتيجيات ملائمة لضمان تجربة تعلم ناجحة.
• التطور: شهد التعليم عن بُعد تسارعًا كبيرًا خلال جائحة كورونا، مما دفع المؤسسات إلى التكيف بسرعة وتبني الحلول الرقمية. مع دمج تقنيات جديدة مثل الذكاء الاصطناعي، والواقع الافتراضي، والألعاب التعليمية، يتجه نحو نموذج هجين وشخصي يلبي توقعات المتعلمين.
• نحو تعليم أكثر شمولًا: يمكن أن يسهم التعليم عن بُعد في جعل التعليم متاحًا للسكان الذين يعيشون في مناطق نائية جغرافيًا أو اقتصاديًا، مع توفير خيارات لمسارات تعليمية مخصصة. إن الوصول إلى تعليم عالي الجودة، حتى في المناطق الأقل خدمة، هو تحدٍ رئيسي في السنوات القادمة.
• القابلية للتكيف والمرونة: بالاعتماد على التقنيات المبتكرة، سيكون التعليم عن بُعد قادرًا على الاستجابة بشكل أفضل للتطورات السريعة في سوق العمل والمهارات المطلوبة. سيصبح أداة مهمة لتطوير التعلم المستمر، مما يمكّن الجميع من التكيف مع التغيرات الاقتصادية والتكنولوجية.
• الدور المركزي للمعلمين: مع التركيز على الدعم الشخصي وتطوير أساليب تعليمية جديدة، سيظل المعلمون يلعبون دورًا حاسمًا في هذا النظام البيئي التعليمي الجديد. ستكون قدرتهم على الابتكار والتكيف حاسمة لضمان جودة التعليم عن بُعد.
Dr. Abdelhakim Almahdi Ibrahim ALCHERIF (Académie Libyenne des Etudes Supérieurs)
Evaluating the Effectiveness of the MVC Design Pattern in Software Development
Abstract
The Model-View-Controller (MVC) pattern is a design pattern that aims to separate an application into three main components: The Model, which manages data and logic; the View, which handles the user interface; and the Controller, which acts as a bridge between the model and the view. This pattern helps improve the structure of applications, making them easier to manage and develop in the long term. However, MVC may face challenges in certain environments, especially in small projects that can suffer from increased complexity and code repetition [1].
This study aims to examine and evaluate the use of the MVC design pattern in software development through a questionnaire distributed to a group of developers across different work environments. This experiment focuses on how the MVC pattern affects the improvement of application structure, accelerates the development process, and increases maintainability. Additionally, the study reviews factors that may negatively impact the use of this pattern, such as the complexity of small projects and the increased repetition in the code.
The results showed that new developers tend to be more neutral or less satisfied with the complexity of the MVC pattern in small projects, although they acknowledge its benefits in organizing application structure and speeding up the development process. Intermediate-level developers, on the other hand, show higher overall satisfaction, focusing more on the benefits related to maintainability and faster development. Finally, experienced developers (with more than three years of experience) are the most satisfied with the pattern, viewing it as a powerful solution for managing large applications with minimal concern about redundancy or complexity.
Keywords: Design Pattern, Model-View-Controller (MVC), Software Development, Software Engineering.
Saad A. Al Deeb (Elmergib University) saaldeeb@elmergib.edu.ly
Mohammed F. Al Boashi (Elmergib University) mfalboashi@elmergib.edu.ly
AI applications in maximum power point (MPP) tracking, power forecasting within PV systems
Abstract:
The rapid evolution of artificial intelligence (AI) technologies has greatly improved the efficiency and effectiveness of photovoltaic (PV) systems, particularly in the areas of Maximum Power Point (MPP) tracking and power forecasting. MPP tracking is essential for optimizing solar energy extraction under fluctuating environmental conditions, different temperature and irradiance. AI algorithms, including neural networks and reinforcement learning, are increasingly utilized to dynamically adjust operating points in real-time. In this paper, the AI technology's offer enhanced adaptability and accuracy especially in the face of rapidly changing weather.
AI-driven power forecasting significantly enhances the ability to predict solar energy generation by utilizing historical data, meteorological information, and better grid management and energy resource allocation. The incorporation of AI in MPP tracking and power forecasting not only optimizes energy output and reliability but also promotes the sustainability and economic feasibility of solar energy systems. AI technology continues to advance, its applications within PV systems promise substantial improvements in energy efficiency and operational performance.
Key words: Artificial Intelligence (AI), Maximum Power Point (MPP) Tracking, Photovoltaic (PV) Systems, Solar Energy, Power Forecasting.
Albashir H saleh (Higher institute of science and technology Algarabulli) basheer.salha@gmail.com
Anwar . A . Ibra (The Libyan Centre for Solar Energy Research And Studie) anwarribraa@gmail.com
Oxidation and Removal of Organic Pollutants from Wastewater Using Photocatalyst
Abstract
Organic compounds presented in water have been considered as toxic pollutants and extremely harmful to the environment. Therefore; this study has investigated the ability of an oxidation process using the light and titanium dioxide (TiO2) as a photocatalyst in order to degrade a pollutant. 2,4-Dichlorophenol (2,4 DCP) was taken as a pollutant model due to its toxicity. The present study also reports a mechanism and kinetic model of 2,4 DCP oxidation and its main intermediate 4-chlorophenol (4-CP) based on the experimental results. In order to obtain more details about the photocatalytic reaction pathway and the kinetic model, set of experiments were carried out using various TiO2 doses. The best effective and optimum value of TiO2 concentration was 1.5 mg/L. The kinetic model provides a very good fit of the experimental data. The reaction mechanism for the photocatalytic degradation of 2,4 DCP is proposed.
Abdulbasit M. Abeish (Petroleum Department, Engineering Faculty, Gharyan University) abeesh_200875@yahoo.com