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Abstract. Non-Archimedean bases are essential for defining and 
studying topologies that can be metrized using non-Archimedean 
metrics. A topological space is non-Archimedean metrizable if it 
admits a topology derived from a non-Archimedean metric, a metric 
satisfying the strong triangle inequality. This paper examines the role 
of non-Archimedean bases in establishing the necessary and sufficient 
conditions for a topological space to be non-Archimedean metrizable. 
Furthermore, it presents the non-Archimedean property in zero-
dimensional topological spaces, emphasizing bases composed entirely 
of clopen (simultaneously open and closed) sets.  
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1  Introduction 

The concept of non-Archimedean bases in topological spaces 
traces its origins to Kurt Hensel's introduction of p-adic numbers, 
which established a topology governed by the ultrametric inequality. 
These spaces are characterized by clopen (simultaneously open and 
closed) balls, leading to a disconnected structure that challenges 
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classical intuition. Alexander Grothendieck further developed their 
utility in rigid analytic geometry, especially for the study of algebraic 
varieties. Today, non-Archimedean spaces play a pivotal role in 
Berkovich spaces, tropical geometry, and dynamical systems, creating 
profound connections between number theory, geometry, and physics 
in modern mathematics. 

The non-Archimedean base of a topological space consists of open 
sets closed under finite intersections, essential for understanding non-
Archimedean, metrizable, and zero-dimensional spaces. A space is 
non-Archimedean metrizable if it has a topology generated by a non-
Archimedean metric that satisfies the ultrametric inequality. This 
results in unique topological properties, such as highly disconnected 
spaces with clopen sets, setting non-Archimedean metric spaces apart 
from traditional ones. These bases are closely related to zero-
dimensional spaces, where clopen sets form a basis, and open balls in 
non-Archimedean spaces are clopen, making them natural examples 
of zero-dimensional spaces. Thus, non-Archimedean bases provide a 
concrete and rich framework for understanding and working with 
zero-dimensional spaces. 
    This paper examines the role of non-Archimedean bases in general 
topological spaces, non-Archimedean metrizable spaces, and zero-
dimensional spaces. Section 4 presents Theorems 4.2, 4.3, 4.4, and 
4.10, which outline the properties of these bases, demonstrating how 
they can characterize non-Archimedean metrizable spaces and reveal 
their topological structure. 
 
2  Definitions and preliminaries 

Let  be a family of subsets of a set . Then  has rank zero, if 
for any pair  with non-empty intersection, we have either 

 or . 
Let ( ) be a metric space. We call  a non-archimedean metric, 

n. - a. metric, (Ultrametric) if  satisfies the strong triangular 
inequality , where . For each 

 and , define the set  to be 
an open ball with radius  and center . In this case, we call  a 
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non-archimedean metric (ultrametric) space. 
Proposition 2.1 Let  be a metric space and d be n.-a. metric on 
X. Then the balls  form a base of rank zero.  
Proof. To show that, if  then  or 

. Suppose that  and , then 
there exist  so  and . Let 

 then . If  so 
either , and then , hence 

 Or , so that 
. If , and then 

, so . If  then 
. Hence . So from all the previous cases, 

we can say that, if two open balls intersect, then one (that of a smaller 
radius) is contained in the other.  

A base of a space  is called a uniform base, if for each  
and each open subset  of  contains , only a finite number of basis 
sets contain  and interest .  
Proposition 2.2  Any metric space has a uniform base.  
Proof. Let X be a metric space, and let  be a metric on . 

Let , then  is a base of X . To show that  

is a uniform base of . Let  and  be an open set containing x , 
then there exist  such that . Thus only balls with radius 

 can contain x and intersect . Hence  is a 
uniform base of X.  

 A cover  of a space  is a refinement of another cover  of the 
same space , in other words  refines , if for every  there 
exists  such that . 

A collection  of a space  is called locally finite if, for each 
, there exists an open neighbourhood  of  such that  

intersects only finitely many elements of . The collection  is 
called -locally finite if it can be expressed as a countable union of 
locally finite collections. 

A paracompact space  is defined as a Hausdorff in which every 
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open cover of  has a locally finite open refinement. 
The following proposition gives a necessary condition for a 

paracompact space to be metrizable. For the proof of this theorem, see 
[1]. 
Proposition 2.3 Any paracompact space with a uniform base is 
metrizable. 

        Let  be a topological space. A subset  of  is called  - set if 
there exists a countable collection of open sets  such that 

. A subset  of  is called zero-set if there exists a 
continuous function  such that . 

        The next theorem is related to the characterization of zero-sets 
and  - sets in topology, particularly in the context of normal spaces. 
Here's a formal version of the statement: 
Theorem 2.4  Let  be a normal space and A be a subset of . Then  
is a closed -set if and only if A is a zero-set.  
Proof. ( ) Let A be a closed -set in a normal space X, then the 
complement of A is an -set. Hence , where  is a 
closed subset of  for each . By Urysohns lemma, for each 

 there exists a continuous function  such that 
 for  and  for . Let  defined 

by  for each , then  is a continuous 
function. For each  we have , and if  there 
exists an  such that , and , so 

. 
( ) The one point set , is a closed -set. Let  be a 
continuous function, such that . Then A is a closed -
set in X.  
Proposition 2.5 If  is a closed subset of a metrizable space , then  
is a  - set.  
Proof. Let  be a closed subset of a metrizable space X. Let  be a 
metric on the set , by Theorem 2.4, we need to show that  is a zero-
set. Since  and , let . So 

, Hence .  
A perfectly normal space is a normal space where every closed set in 
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the space is a  - set.  
Proposition 2.6  Any metrizable space is perfectly normal.  
Proof. Let  be a metrizable space and  be a closed subset of . 
Then  is a normal space. We only need to show that  is a  - set in 

. For each , define open sets , 
where . As ,  shrinking 
toward . To show that . Let , then . 
So  for all  which implies that . Now let 

, then for each , . Since  is closed, so 
 and it means that . Therefore, , which 

shows that  is .  
 
3  Non-archimedean topological spaces 
Definition 3.1 A  - space  is said to be a non-archimedean (n. - a.) 
space if X has a base of rank zero. In this case, we call the base of 
rank zero a non-archimedean base ( . base ). A subset  of a 
space  is called a clopen set if it is both closed and open 
simultaneously. 
Lemma 3.2 All members of any n. - a. base are clopen.  
Proof. Let  be a n. - a. base of a space  and let . To show that 

 is closed. If  and , then every basic neighbourhood  of 
 intersect . So either , in this case, , gives a 

contradiction. Or  is contained in every basic neighbourhood  
containing x. So . But  is a  space, 
hence , which gives a contradiction.  

 Every subspace of a n. - a. space  is n. - a., since every subspace 
of a  - space is  and if  is a base of  has rank zero then it’s trace 
is a base of rank zero. 

A family  of subsets of a space  is called discrete if for any 
point , there exists an open set  of  that intersects at most one 
element of . This means that every element of the family  is 
isolated from the others.  
Proposition 3.3 Let X be a n. - a. space, and  is a n. - a. base of X, 
then any locally finite collection of disjoint basic sets is a discrete 
family.  
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Proof. Let  and let  be a disjoint locally finite 
subcollection of . If there exists  such that , then  is a 
neighbourhood of  and does not intersect any member of . If 

, since  is a locally finite closed collection, then 
 is closed, so  is open containing x and does not 

intersect any member of , hence  is a discrete family. 
A chain of a family  of subsets of a space  is a subcollection  

of  such that for any two sets  either  or . 
In other words, any two sets of  are comparable under inclusion. 
Lemma 3.4  Let  be a n. - a. space and  is a n. -a. base of , then 
the union of any chain in  is a clopen subset of . Moreover, the set 
of all unions of chains in  is a n. - a. base of .  
Proof. Let  be any chain in  and let . 
Firstly, to show that  is clopen. For any  and  and 

, there exist a basic element  such that  and 
. If  for some , then either , 

hence , so we have , which gives a contradiction. Or 
, so , which gives a contradiction. Hence 

 for each . That is mean , thus , 
so  is clopen. 
Secondly, to show that the set of all unions of chains in  is a . 
base of . If , there exists  such that , and so there 
exists a chain  in  such that . So , for some . Now, If 

 are any two such union of two chains  in  then  

 

Hence either  for each . and . In this case 
. Or  for some  so either 

 or . 
     The following theorem captures a key structural property of non-
Archimedean spaces, reflecting their unique topological nature. The 
existence of a non-Archimedean base ensures that the topology of the 
space is entirely determined by these clopen subsets. The 
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characterization of clopen sets as unions of locally finite, disjoint 
subcollections of the non-archimedean base emphasizes the highly 
disconnected nature of the space, where clopen sets serve as the 
fundamental building blocks of its topology. 
Theorem 3.5  [9] Let  be a n.-a. space. Then there is a n. -a. base  
of , such that the subset  of  is clopen if and only if  is a union of 
a locally finite disjoint subcollection of   
Proof. ( ) Let A be a clopen subset of . For each , let 

,  where  is a n . -a . base of . 
Then  is a clopen partition of A and a discrete 
collection; since for each , if  is a neighbourhood of  
which does not intersect any other member of . If , since  is 
closed, so there exist  with . 
( ) Let  be a n. -a . base of  , and let  be the unions of all chains 
in . Then by lemma 3.4,  is a n.-a. base of  and all  are 
clopen. So for each locally finite collection  we 
have  is clopen. 
Example: Let  be the discrete topology on the set of natural 
numbers . Let  and let  be a topology on . All 
subsets of  are open in , if  and , then  is 
open in  if and only if  is a compact in . This 
example shows that in a n. - a. space, not any union of discrete sets of 
a n. - a. base is clopen; , is not closed in . Therefore, 
local finiteness cannot be deleted in the last theorem. 
The proof of the following proposition is in [9].  
Proposition 3.6  Any n. - a. space is hereditarily ultraparacompact. 
     Note that: if  is a hereditary ultraparacompact space, then it is not 
necessary a n. - a. space.  
     For example; Let  be the set of real numbers and  be the family 
of all intervals  where , . Then the members of  
are clopen with respect to the topology generated by  on . This 
topology is called “Sorgenfrey-line” and denotes it by . The 
sorgenfrey-line  is hereditarily ultraparacompact, since  is 
hereditarily Lindelof, but  is not a n. - a. space. 
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In non-Archimedean spaces, having a countable dense subset 
(separability) often leads to second countability. This is because the 
topology of a non-Archimedean space is defined by its clopen sets, 
which serve as a base. When the space is separable, it is possible to 
construct a countable clopen base that reflects the separable structure. 
The next theorem states these relationships. 
Theorem 3.7  A n.-a. space is separable if and only if it is second 
countable.  
   Proof. Every second countable space is separable, so in particular, if 
a non-Archimedean space is second countable, it is automatically 
separable. Let  be a separable non-archimedean space. Thus  has a 
countable dense subset . The intersections of the 
clopen sets with  (or those defined around points in ) often suffice 
to construct a countable base. 
  
4  Applications of non-archimedean bases 
   Non-Archimedean bases are fundamental tools in topology, 
especially in the study of non-Archimedean metrizable spaces and 
zero-dimensional spaces. These concepts have deep implications in 
many areas of topology. Below is a detailed discussion of some of 
their applications: 
4.1  Non-archimedean merizability property 

    A natural question arises: under what conditions can a topological 
space be classified as non-Archimedean metrizable? Specifically, 
what criteria allow us to describe the topological structure of such 
spaces by defining an appropriate non-Archimedean metric? In this 
section, we present important theorems that answer this question. 
Definition 4.1 A space  is called n. - a. metrizable (ultrametrizable) 
if there exists a n. - a. metric  on  such that the topology induced by 

 coincides with the original topology on . 
The next theorem characterizes topological spaces to be n. – a. 
metrizable and can be found in books on general topology. 
Theorem 4.2 A topological space  is n. - a. metrizable if and only if 
there exists a  - locally finite clopen base of .  
Proof. ( ) Let  be a . – a. metrizable space, and let 
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. Since any two members of  are disjoint or 

identical, so  is a locally finite clopen collection for all n. Let 
, then U be a -locally finite clopen base of X. 

( ) Let  be a countable number of a locally finite clopen 

base of X be given. Let  be the cardinal of the set  of all possible 
indices , we put  

 

The families  remain locally finite. We define for each 

 and each pair  a function  such that  

 

Let  be a function defined by , for each 
. To show that  is an embedding. The mapping  is one-to-one, 

since to each pair of different points x and y in X, there corresponds a 
 containing x and not containing y, therefore 

, hence . The map  is 
continuous, since if  is any -neighbourhood with  (  
sufficiently large ) in  of a point . If , 
there is only a finite number of  which intersect a certain 
neighbourhood  of . there are two types of , one of them 

 which contains x, and the other  is not containing x. Let 
 then  is an open 

neighbourhood of x. To show , let  and 
, since x and y are in  or in it’s 

complement. Now, let  be a n. - a. metric on  as described in 
lemma (4.2.4). For any  then   

 

The map  is open, since, if  is an open set and , there 
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exists  With . Hence . If 
 is fulfilled for a certain point . It follows 

that  which implies that . The set  is 
therefore open in . The mapping  being an embedding, thus it 
induces the required . metric on X by considering  instead 
of X.  
Theorem 4.3  A space  is n. - a. metrizable if and only if  has a n. - 
a. uniform base.  
Proof. ( ) Let  be a n. - a. metrizable space, then there exists a n. - 
a. metric  on  such that the topology induced by d coincides with 

the topology on , let , then  is a . - a. 

base and by Proposition 2.2,   is a uniform base of X . 
( ) Let  be a topological space and  has a n. - a. uniform base, so  
is n. - a. space. Hence by Peopositionmetricuniform  is paracompact 
space and by Proposition 3.6, X is metrizable n. - a. space, so X is n. - 
a. metrizable space. 

The next theorem is in [9] and it characterizes when a compact 
space possesses the non-Archimedean metrizability property. In such 
spaces, the topology is determined by a base of clopen sets. 
Compactness ensures that this clopen base is finite at small scales, 
which is consistent with the structure of a non-Archimedean metric. 
Theorem 4.4 A compact space is n. - a. metrizable if and only if it has 
a n. - a. base.  
Proof. ( ) Let  be a n.-a. metrizable, so  has a n. - a. base. 
( ) Let  be a n. - a. base of a compact space X, to show that X is n. - 
a. metrizable. By Theorem 4.3, it is enough to show that X has a n. -a. 
uniform base. Let , then  is 
totally ordered by the n. - a. property of , and because of the 
compactness of  well ordered by  if and only if 

, since by lemma 3.4,  is clopen and hence 
compact, thus there is a greatest  where . 
For any  let  be the greatest set in  among all that are 
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contained in . Now, let  be an open neighborhood of . To show 
that only finitely many members of  intersect . suppose not; 
that is there are infinitely many  intersecting . Then 
there exists a sequence , of sets in  and 
a sequence  of points such that  and , 
but . Since  is countably compact, there is a cluster 
point, say y, of  in . Now since all but finitely many points 
of the sequence are in  for any . Let  such that 

 and . This means that  For each . 
Hence  for all  , and this contradicts the assumption that y is 
a cluster point of . Thus only a finite number of members of 

 intersect . 
Corollary 4.5 Let  be a compact space. Then  is a n. - a. space if 
and only if  has a countable base of clopen sets. 
Corollary 4.6 Let X be a locally compact space. Then  is a n. - 
a.space if and only if  is n. - a. metrizable.  

The following example illustrates a non-Archimedean space that is 
not metrizable, and therefore not non-Archimedean metrizable. 

Let X be the set of real numbers . Define a topology on  that 
has the following base. Let  where 

 and  be a fixed irrational number. Let  
irrational . To show that  is a .base of X. Let 

, if x is an irrational number, then , if x is a rational 
number then  for each , . So there exist 

 such that . Now, if 
 then: 

Case 1) if  and  are any two integers such that  then the 
intervals and  

are disjoint, since . To show this, suppose not, so 
 then  implies that , contradiction. 

Case 2) If  and  are any natural numbers, where  then 
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. 
Case 3) If  and  where  then . 
Case 4) If  is a fixed negative number less than -1 and , 
where  then:  are disjoint intervals. Since, 

. 
Case 5) If  is a fixed positive integer number and  where 

 then  are disjoint intervals and 
. To show this, suppose not, so  

this implies . Hence , so , a contradiction. 
In general, for any natural numbers  and any integers , , we 
have, if  

….…….…(1) 

 then, . To show this, suppose not, this is mean  
………..….....(2) 

 If , then we have a contradiction with (1). 
If , from (1) we have , and from (2) 
we have , hence . 
Since  is an integer number, so this gives a contradiction. 
Now the space  is . and the set  of all rational numbers is 
closed in  , To show  is not a  set in  . Suppose  is  - set 
in , hence ,  is open for each . Let 

, so . 
By the Baire category theorem see, IR cannot be a union of closed 
nowhere dense sets, so there exists , such that  contains an 
interval, this means, there exist  and , a 
contradiction. Hence  is not perfectly normal, therefore, by 
Proposition 2.6,  is not metrizable, hence not non-archimedean 
metrizable. 
 
4.2  Zero-dimensionality property 
Zero-dimensionality property in topology characterizes spaces with  
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bases consisting entirely of clopen sets. This property implies a high 
degree of separability, as clopen sets provide precise "building blocks" 
for the topology. Zero-dimensional spaces are always totally 
disconnected, meaning that their only connected subsets are 
singletons. Zero-dimensional spaces often arise in analysis and 
topology due to their structural simplicity and are closed under 
subspaces and finite or infinite product topologies. These spaces are 
crucial in areas like Stone duality, where they correspond to Boolean 
algebras, and in constructing counterexamples or specialized models 
within general topology. 
Definition 4.7 A space  is called zero-dimensional if  is a non-
empty  Space with a base consisting of clopen (open and closed) 
sets.  
    The non-archimedean spaces are subclasses of zero-dimensional 
spaces. This follows from the definition of zero-dimensional space 
and Lemma 3.2. 

The Sorgenfrey line , as mentioned above, is an example of 
zero-dimensional space that is not non-archimedean. 

A non-Archimedean space has a basis made up entirely of clopen 
sets. This clopen structure has important implications for the large 
inductive dimension function, often denoted by , due to the 
distinctive properties of these spaces.  

The large inductive dimension function is defined in [7] as follows: 
Definition 4.8  Let  be a topological space. Then we assign the large 
inductive dimension of , denoted by , which is an integer 
larger than or equal to  or the “infinite number” ; the definition 
of the dimension function  consists of the following conditions: 
(BC1)  if and only if ; 
(BC2) , where , if for every closed set  
and each open set  which contains  , there exists an open set 

 such that  and . 
(BC3)  if and only if  and ; 
(BC4)  if  for .  

The large inductive dimension  is also called the Brouwer-Cech 
dimension. If  is defined then  is defined for every 
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closed subspace  of . 
Proposition 4.9  For any n. - a. space , we have .  
Proof. Let X be a . space and  be a . base of X . Let  
be disjoint closed sets in . 
Then we have  and 

 are two clopen sets of X 
separating  and . Since, if , then there exist  
and  such that  where . 
Since , so  and . Since , 
implies that . Since  is a n. - a. base of , so 
either , in this case,  and then . Which 
gives a contradiction. Or , so . Also gives a 
contradiction. Hence . 
Now, if  then there exists  such that 

. So we have , hence , that is mean 
. Similarly, if , there exists  such that 

, therefore, . So , that is, .  
The following theorem plays a significant role in dimension theory, 

serving as a tool for classifying and analyzing zero-dimensional 
spaces. It is closely associated with a unique property of non-
Archimedean metrizable spaces and the characterization of spaces 
with large inductive dimension zero Ind(X)=0. 
Theorem 4.10 A metric space  is . metrizable if and only if 

.  
Proof. ( ) Let  be a metric space and n. - a. metrizable, so  is 

. space, and by Proposition 4.9, we have . 
( ) Let  be a metric space with , let  be an open set in 

, so  may be considered as a union of a countable number of 
mutually disjoint clopen sets say . To prove this, let d be 
a metric on  and let  be a neighbourhood of . Let 

 be disjoint clopen subsets of  are already defned. 
We now, proceed to define  in the following way: 
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Let  be disjoint closed 

sets. Since Ind , so by theorem (3.1.9)  and B can be separated 
by clopen sets. Let  be clopen set containing B and contained in  , 
then let . In this way, any  is decomposed into a 
countable number of disjoint sets . The countable 
number of families  originated by 
enumerating the pairs  is locally finite clopen base of , so 
by theorem (4.2.7)  is n. - a. metrizable.  
Conclusion. This paper has studied the connection between non-
Archimedean bases, non-Archimedean metrizability, and zero-
dimensional spaces. It has shown that the presence of a non-
Archimedean base serves as both a necessary and sufficient condition 
for a space to be non-Archimedean metrizable. Moreover, the study 
demonstrated that the structure of a non-Archimedean base, defined 
by its clopen (simultaneously open and closed) sets, offers a natural 
framework for understanding the topological and metric properties of 
zero-dimensional spaces. Future research into these properties will 
further deepen our understanding of their interconnections. 
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